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Abstract

Lymph node metastasis is one of the most significant
diagnostic indicators in breast cancer, which is tradition-
ally observed under the microscope by pathologists. In re-
cent years, computerized histology diagnosis has become
one of the most rapidly expanding directions in the field of
medical image computing, which aims to alleviate pathol-
ogists’ workload and simultaneously reduce misdiagnosis
rate. However, automatic detection of lymph node metas-
tases from whole slide images remains a challenging prob-
lem, due to the large-scale data with enormous resolutions
and existence of hard mimics resulting in a large number
of false positives. In this paper, we propose a novel frame-
work by leveraging fully convolutional networks for effi-
cient inference to meet the speed requirement for clinical
practice, while reconstructing dense predictions under dif-
ferent offsets for ensuring accurate detection on both micro-
and macro-metastases. Incorporating with the strategies of
asynchronous sample prefetching and hard negative min-
ing, the network can be effectively trained. Extensive ex-
periments on the benchmark dataset of 2016 Camelyon
Grand Challenge corroborated the efficacy of our method.
Compared with the state-of-the-art methods, our method
achieved superior performance with a faster speed on the
tumor localization task and even surpassed human perfor-
mance on the WSI classification task.

1. Introduction
1.1. Background

Breast cancer has been one of the leading cancer killers

threatening women in the world [14]. As one of the most

important diagnostic criteria of breast cancer, detecting the
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metastases, especially in the sentinel lymph nodes under

arm, is a routine procedure for cancer staging performed by

pathologists. According to the pathologic tumour, node and

metastasis (TNM) breast cancer staging system [11], posi-

tive metastasis would lead to a higher staging of the patient,

and afterwards necessary treatments would be accordingly

arranged.

However, as is widely known, the process of patho-

logic diagnosis is extremely time-consuming and laborious,

which requires pathologists to fully focus themselves hour

by hour on the samples under the microscope. This process

is highly relied on the experience of pathologists and has

limited reproducibility. Moreover, there is a considerable

lack of pathologists amid the sharply growing demands of

diagnosis with the cancer morbidity increasing [16]. The

pathologists have to diagnose hundreds of biopsy slides ev-

eryday, thus it is quite difficult, if not impossible, for a thor-

ough inspection of whole slide and the risk of mis-diagnosis

might increase if only regions of interest are analyzed.

Over the last decade, computerized histology analysis

has been one of most rapidly expanding fields in medical

image computing. The computer aided diagnosis methods

can not only alleviate pathologists’ workload, but also con-

tribute to reducing the misdiagnosis rate. With the advance

of high-throughput scanning technology, whole-slide image

(WSI) analysis is becoming essential in digital pathology.

TheWSIs are generally stored in a multi-resolution pyramid

structure, with multiple down-sampled versions of original

image [13]. The original image with the largest resolution is

referred as level-0, and other versions from down to up are

called as level-1to level-n, as shown in Figure 1 (a).

Metastasis detection in sentinel lymph node from WSIs

plays a key role in breast cancer staging. However, it is quite

difficult with following challenges: 1) the large variations of

biological structures and textures in both metastatic regions

and background (Figure 2(a)); 2) the hard mimics from nor-

539

2018 IEEE Winter Conference on Applications of Computer Vision

978-1-5386-4886-5/18/$31.00 ©2018 IEEE
DOI 10.1109/WACV.2018.00065



��������

��������

������	�





�

�����

���	
�����
��������

��� ���

Figure 1. The WSI structure and multi-level mapping strategy. (a)

The multi-resolution pyramid structure of whole-slide image. (b)

multi-level mapping strategy for acceleration in pre-processing.
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Figure 2. Illustration of the challenges for computerized histology

image. (a) Variations of biological structures and textures. (b) Hard

mimics from normal tissues in background. (c) Appearance vari-

ations due to the acquisition process. (d) Size difference between

micro- and macro-metastases.

mal tissues which carry similar morphological appearance

with metastatic regions, shown in Figure 2(b); 3) as illus-

trated in Figure 2(c), the image appearance is prone to be

affected by the image acquisition process, e.g., sampling,

staining and digitalizing; 4) the significant size variance be-

tween micro- and macro-metastases, see Figure 2(d). Last

but not least, the size of WSI is extremely huge, approxi-

mating to 200, 000×100, 000 pixels. How to efficiently pro-
cess such a giga-pixel image further poses challenges for

automatic detection methods.

1.2. Related work

The early studies of histology image analysis can date

back to 90s [1, 15]. During these decades, with the dramatic

advance in computer power and image scanning techniques,

many works have been proposed for histology image recog-

nition applications, which can be categorized as following

two parts.

1.2.1 Region of Interest Analysis

Due to lack of whole-slide scanning techniques and compu-

tational power at the beginning, most of previous work stud-

ied on regions of interest (ROI), e.g., image size 500× 500,
pre-selected by pathologists from WSIs.

In the earlier years, the most of methods are designed

based on hand-crafted features. For nuclei detection and

segmentation, a basic function in breast cancer diagnosis,

researchers proposed a series of level set methods equipped

with many of hand-crafted features, such as Hough trans-

form [9], gradient [19] and concavity [12], etc., which are

exquisitely applied and designed with prior knowledge of

boundary, region or shape. Afterwards, several traditional

hand-crafted feature based machine learning frameworks,

like Bayesian classifier [17], Support Vector Machine [26],

are proposed to detect or segment nuclei. These kinds of

hand-crafted methods were also widely applied in other

digital histopathological applications, such as level set for

tubule segmentation in breast cancer [28, 2] and Support

Vector Machine for gland detection in prostate cancer [24],

etc. However, the representation capabilities of hand-crafted

features are very limited to fit such complex or large various

patterns.

Recently, with the advent of powerful computation, deep

learning methods have attained significant achievements in

a wide range of fields. Many methods have been proposed

for medical image recognition tasks, such as anatomical

structure localization [7] from 2D ultrasound images and

3D volume segmentation from CT volumes [10, 20]. In

the field of digital histopathology, Xu et al. [29] exploited
stacked sparse autoencoders (SSAE) with unsupervised pre-

training for nuclei detection from breast cancer histopathol-

ogy images. A sibling fully convolutional network with

prior objectness was presented in [31] and achieved excel-

lent performance on the nuclei detection and fine-grained

classification. Deep neural networks have been employed

in mitosis detection from breast cancer histopathology im-

ages [8, 5] and achieved good performance in two grand

challenges [21, 25]. Chen et al. [6] presented a deep
contour-aware network for gland as well as nuclei instance

segmentation from histopathological images, which outper-

formed other methods by a large margin in two challenges

recently [23]. However, these methods were studied in the

pre-selected regions of interest, which are not suitable for

real clinical practice.

1.2.2 Whole-slide Image Analysis

To our best knowledge, there were limited works process-

ing histology images in the whole-slide level until the chal-
lenge on cancer metastasis detection in lymph node (Came-
lyon16)1 held in conjunction with 2016 ISBI recently. In
this challenge, Wang et al. [27] employed an ensemble of
two GoogLeNets and achieved the best performance on

12016 ISBI Camelyon challenge: https://camelyon16.
grand-challenge.org/
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metastasis detection. However, their framework used patch-

based classifications, which would significantly increase the

computation cost at the finest resolution (i.e., level-0), and

hence is suboptimal in real clinical practice. Recently, Xu et
al. [30] proposed a sparse kernel technique to accelerate the
pixel-wise predictions, which could alleviate the efficiency

problem to some extent. However, pixel-wise predictions

would cost much more time and are not necessary in our

underlying problem.

1.3. Contributions

The contributions of our work can be summarized as fol-

lows:

• We propose a novel framework, referred as ScanNet,
by leveraging fully convolutional networks (FCN) for

efficient inference to meet the speed requirement for

clinical practice, which can be up to a dozens of times

faster than other patch-based methods.

• In order to further improve the performance, a dense
reconstructing mechanism is explored for ensuring ac-

curate detection on both micro- and macro-metastases.

Incorporating with the strategies of asynchronous sam-

ple prefetching and hard negative mining, our pro-

posed network can be effectively trained.

• Extensive experiments on the benchmark dataset of
Camelyon16 corroborated the efficacy of our method.
Compared with the state-of-the-art methods, our

method achieved superior performance with a faster

speed on the tumor localization task and even sur-

passed human performance on the WSI classification

task.

2. Methods
Figure 3 (top) illustrates the pipeline of our proposed

fast and dense scanning framework, referred as ScanNet,

for metastatic breast cancer detection from WSIs. We first

employ a simple yet efficient method to remove the non-

informative regions of input WSI. Then we feed pre-

processed images into the modified FCN equipped with

dense reconstruction mechanism for efficient and dense pre-

dictions. Finally, we utilize simple morphology operations

to refine the results.

2.1. Divide and Conquer

Before going into details, we first elaborate the strat-

egy of divide and conquer from a global perspective, i.e.,

how to divide such an extremely large WSI into ROIs be-

fore inputting them into the ScanNet. Afterwards, we fo-

cus on the details about how to conquer the ROI from a lo-

cal perspective, including network design and dense recon-

struction mechanism. Due to the incredible size of WSI, the
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Figure 3. The illustration of our method. Top: the framework of

our method. Bottom: reconstruction for dense predictions.

divide-and-conquer strategy enables the possibility of auto-

matically processing such a giga-pixel level image with lim-

ited GPU memory. To be specific, division is performed in

the pre-processing, with ROIs pre-selected and conquered

respectively by the ScanNet later. Afterwards, the individ-

ual probability tiles derived from the ROIs are stitched to-

gether to generate the whole prediction map as illustrated in

Figure 3 (bottom).

The ScanNet inherently falls into the cohort of FCN

structure, which is equivalent to a patch-wise CNN with in-

put size Lf of patch and sliding stride Sf . Here, we call

Lf and Sf as the inner input size and inner stride of Scan-

Net (as dimensions are square, we denote the side length

for brevity). With one patch corresponding to one predic-

tion value, a patch slides n times over the WSI along one
dimension will generate n+1 prediction values, i.e., a ROI
sized Lr = Lf + n ∗ Sf produces a probability tile sized

Lp = n + 1. To ensure the neighbouring probability tiles
with different offsets can be seamlessly stitched without

gaps and overlaps, the ROIs are fetched with sliding stride

Sr = Sf ∗Lp, see Figure 3 (b) to (c). In summary, the rules

should be satisfied as follows:{
Lr = Lf + (Lp − 1) ∗ Sf

Sr = Sf ∗ Lp

(1)

2.2. Fast Metastasis Detection from WSI via Scan-
Net

Pre-Processing. It is observed that more than 70% area

of a typical WSI is covered by non-informative background,

which is futile for cancer assessment. In order to remove

these regions for saving computational cost, we employ

the simple OTSU algorithm [18] to determine the adaptive
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threshold and filter out most of the white background. After-

wards, ROIs contained informative regions are pre-selected

based on OTSU mask. In addition, to accelerate this opera-

tion, we conduct OTSU algorithm using a multi-level map-

ping strategy based on the merit of pyramid structure, as

demonstrated in Figure 1 (b). That is we filter the down-

sampled (e.g., level-5) image first and then map the fil-

tered image back into the original (level-0) image, which

achieved dozen times of acceleration in the pre-processing

step.

Fast Prediction via ScanNet. In a local perspective, we
propose to harness a modified FCN (i.e., ScanNet) for fast

prediction in large WSIs by taking its advantage of tak-

ing arbitrary sized images as input. Different from standard

FCNs that are commonly used for segmentation tasks [6],

our ScanNet has no upsampling path which is a must for

segmentation but not necessary for detection tasks. Further-

more, the upsampling path would greatly slow down the

detection process considering the large size of WSIs. Us-

ing the FCN without upsampling path, our method can effi-

ciently and accurately output a probability tile with a much

smaller size than the input image. We further leverage a re-

construction algorithm, which will be elaborated in the next

subsection, to generate a denser one by assembling these

small tiles.

We implement the proposed ScanNet based on a modi-

fied VGG-16 [22] network by replacing the last three fully

connected layers with fully convolutional layers 1024 ×
1024 × 2 (i.e., kernel size 1 × 1). In order to avoid the
boundary effect of FCN predictions, the padding operations

are removed from our architecture, as shown in the training

phase of Table 1. Based on this modification, our ScanNet

can enjoy the transferred features learned from a large set of

natural images [6], which demonstrated consistent improve-

ments over that without transfer learning. In the training

phase, we employ patch samples with size as 244 randomly
cropped from WSIs to train the ScanNet. In the predicting

phase as shown in Table 1, by leveraging the merit of the

fully convolutional architecture, our ScanNet can take an

ROI with a large size up to Lr = 2868 (determined by the
maximal capacity of GPU memory) as input and output a

probability tile with size Lp = 83, as denoted in Eq. (1). By
such a way, our ScanNet can process a WSI more than hun-

dreds of times faster by removing the redundant convolution

computations than patch-based classification methods with

the same stride.

Effective Training Strategies. To enhance the learning
process of proposed network, we employ following effec-

tive training strategies:

Asynchronous Sample Prefetching. During the training

phase, the heavy I/O bottleneck always exists, i.e., the GPU

is often idle while waiting for fetching batched training

data. To resolve this issue, we adopt an asynchronous sam-

Table 1. The Architecture of ScanNet.
Layer Feature maps (Train) Feature maps (Predict) Kernel size Stride

Input 244×244×3 2868×2868×3 - -
Conv1 1 242×242×64 2866×2866×64 3×3 1×1
Conv1 2 240×240×64 2864×2864×64 3×3 1×1
Pool1 120×120×64 1432×1432×64 2×2 2×2
Conv2 1 118×118×128 1430×1430×128 3×3 1×1
Conv2 2 116×116×128 1428×1428×128 3×3 1×1
Pool2 58×58×128 714×714×128 2×2 2×2
Conv3 1 56×56×256 712×712×256 3×3 1×1
Conv3 2 54×54×256 710×710×256 3×3 1×1
Conv3 3 52×52×256 708×708×256 3×3 1×1
Pool3 26×26×256 354×354×256 2×2 2×2
Conv4 1 24×24×512 352×352×512 3×3 1×1
Conv4 2 22×22×512 350×350×512 3×3 1×1
Conv4 3 20×20×512 348×348×512 3×3 1×1
Pool4 10×10×512 174×174×512 2×2 2×2
Conv5 1 8×8×512 172×172×512 3×3 1×1
Conv5 2 6×6×512 170×170×512 3×3 1×1
Conv5 3 4×4×512 168×168×512 3×3 1×1
Pool5 2×2×512 84×84×512 2×2 2×2
Conv6 1024 83×83×1024 2×2 1×1
Conv7 1024 83×83×1024 1×1 1×1
Conv8 2 83×83×2 1×1 1×1

ple prefetching mechanism by using multiple producer pro-

cesses of CPU to prepare the training samples while one

consumer process for GPU to consume the training data.

This strategy can keep GPU running all the time and boost

at least 10 times acceleration in the training stage.
Extensive Data Augmentation. Data augmentation is impor-
tant for alleviating the overfitting issue. Benefiting from the

merit of on-the-fly fetching, we can augment the samples

quite flexibly, including translation, rotation, scaling, flip-

ping and color jittering.

Hard Negative Mining. While there exist lots of negative
training samples from the WSIs, most of them can be eas-

ily distinguished from the true metastases. In order to en-

hance the discrimination capability of our ScanNet, we add

the false positive samples, i.e., hard negative mining (HNM)

examples, from the previously trained classifier back to the

training data. This strategy makes the training process more

effectively by focusing on hard cases, which can help to sig-

nificantly boost the recognition performance.

2.3. Dense Reconstruction for Accurate Detection

To further improve the detection performance, we pro-

posed a dense reconstruction mechanism for generating

dense predictions, which is free from the inner stride con-

straint of FCN. The inner stride of FCN structure is re-

stricted to the number of its pooling layers, e.g., ScanNet

modified from VGG-16 with 5 pooling layers is equivalent
to patch-wise CNN network with stride 25 = 32. Hence, the
deeper network with the more pooling layers, the sparser

probability map is generated. This makes it difficult to bal-

ance the tradeoff between the deep structure and dense pre-

dictions. We observed that shifting an ROI by certain off-

sets, we can catch the views missed in the interval of the

FCN inner stride, shown in Figure 4. Motivated by this,

we propose to integrate these missed views to reconstruct

a denser and more precise one. This procedure is quite dif-

ferent from the interpolation mechanism, as demonstrated
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Figure 4. The reconstruction of dense prediction by offset proba-

bility tiles (OPTs). The black rectangles are two neighbour patches

belonging to a certain ROI. By offsetting the patch (red rectangle)

accordingly, we can catch the missing view in the interval of FCN

stride. The red value is the patch prediction after offset, which is

different from the blue value generated by interpolation.

in Figure 4. The inputs of dense probability tiles (DPTs) for

reconstruction are the probability tiles generated from an

ROI given certain offsets, referred as offset probability tiles

(OPTs). The OPTs pij are generated by a well trained Scan-
Net F given a certain ROI image Ir and its offset vectors−→
O ij , as illustrated in Figure 3 (bottom). We define the ra-

tio between the size of DPTs and the size of OPTs as dense

coefficient α and the OPTs can be formulated as:{
pij = F(Ir,−→O ij)−→
O ij = (i ∗ Sd, j ∗ Sd), i, jε[0, 1, ..., α− 1]

(2)

where
−→
O ij is determined by the inner stride Sd of DPTs af-

ter reconstruction and inner stride Sf of OPTs before recon-

struction, where Sd = Sf/α and Sf = 25, i.e., 5 pooling
layers with a stride 2 in each layer in our ScanNet. Then we

can calculate the DPTs by interweaving the OPTs alterna-

tively. Suppose that (h′, w′) are the coordinates of a position
in a DPT p, the probability of p(h′, w′) can be calculated as:⎧⎪⎨

⎪⎩
p(h′, w′) = pij(h,w)

i = h′ mod α, j = w′ mod α

h = �h′/α� , w = �w′/α� .
(3)

For instance, the Sf = 32 is the inner stride of Scan-
Net before reconstruction. If dense coefficient α =
2 (i.e., Sd = 16), we should generate four OPTs

(p00, p01, p10, p11) from the Ir based on four offset vectors
((0, 0), (0, 16), (16, 0), (16, 16)). After obtaining the set of
DPTs with reconstruction, we stitch them together to gen-

erate the final probability map, as illustrated in Figure 3 (b)

Table 2. The details of Camelyon16 dataset

Sources
Train Test

Normal Train Normal Train

Radboud UMC 100 70
80 50

Utrecht UMC 60 40

Total 160 110 80 50

to (c). The fetched stride of ROIs, denoted as Sr, should

satisfy rules in Eq. (1) as the following rewritten constraint:

Sr = Sd ∗ Ld, where Ld is the side length of the DPTs.

Thus, we can simply stitch the DPTs non-overlapped as

usual without any changes in the previous design of the size

Lr and stride Sr of ROIs.

The positional relationship (height H for example and

the widthW can be formulated in the similar way) between

the stitched probability map and the original WSI can be

determined by following:

HI = HP ∗ Sd + Lf/2 (4)

where HI is the index of original WSI space, HP is the

index of the stitched probability map, and Lf is the inner

input size of the ScanNet.

Finally, we post-processed the image by morphology

opening operations to remove the small outliers. For the lo-

calization task, each connected component in the binarized

probability map (threshold was set as 0.5 emperically in

our experiments) was considered as a detection, with score

equal to the maximum probability within the region. For

the WSI classification task, the prediction was simply com-

puted as the maximal score within the slide without any so-

phisticated post-processing procedures.

3. Experiments and Results
3.1. Dataset

We evaluated our method on the benchmark dataset of

ISBI 2016 Camelyon16 [3]. The challenge consists of two

tasks: tumor region localization and WSI classification.

The data of Camelyon16 challenge contains a total of 400

whole-slide images of sentinel lymph node from two inde-

pendent datasets collected in Radboud University Medical

Centre (Radboud UMC) and the University Medical Centre

Utrecht (Utrecht UMC). The details of datasets are illus-

trated in Table 2. The training data totally contained 160
normal WSIs and 110 tumor WSIs with pixel-level annota-
tions provided by experienced pathologists. The testing data

with 130WSIs were employed for performance evaluation.

3.2. Implementation Details

Our framework was implemented utilizing TensorFlow

library on the workstation equipped with one 12 GB
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Figure 5. Typical examples of metastasis detection results from

our proposed method. Top: ground truth annotations from pathol-

ogists indicated by the yellow lines. Bottom: Our detection results

overlaid on the original images with different colors.

Geforce GTX TITAN X GPU. We trained our ScanNet in

two stages, i.e., general sample learning and hard negative

sample learning. Batch size was set as 75 at each iteration to
make the most of GPU memory. In the first learning stage,

without hard negative samples, the ScanNet was initialized

with VGG-16 model pre-trained from ImageNet. In the sec-

ond learning stage, we started to finetune our model from

time to time by enlarging and re-training on the hard nega-

tive samples iteratively.

3.3. Evaluation Metrics

The challenge consists of two tasks, i.e., tumor region lo-

calization and WSI classification. The first task is evaluated

based on Free Response Operating Characteristic (FROC)

curve [4]. The FROC score is defined as the average sensi-

tivity at 6 predefined false positive rates: 1/4, 1/2, 1, 2, 4 and

8 false positives per scan. The second task is evaluated us-

ing the AUC score, i.e., area under the Receiver Operating

Characteristic (ROC) curve [32].

3.4. Qualitative Evaluation

We illustrate typical examples of metastasis detection re-

sults from our method in Figure 5, from which we can ob-

serve the high consistency between our heat map and an-

notations from experienced pathologists. The first and sec-

ond column in Figure 5 are the typical macro metastases

with diameter larger than 2mm. We observe that our heat
maps are highly consistent with the annotations of pathol-

ogists. The third and fourth column in Figure 5 contain the

typical micro metastases and isolated tumour cells (ITCs)

with diameter smaller than 2mm or 0.2mm respectively.

We observe that our heat maps are also highly sensitive to

such micro cases and ITCs with sparse spreading. These

qualitative results indicate that our method can robustly and

accurately process the metastases in different sizes, espe-

cially performing well in challenging cases of micro and

ITC metastases.

Table 3. Quantitative comparison with other methods

Methods FROC score AUC score

Human performance 0.7325 0.9660

ScanNet-16(ours) 0.8533 0.9875

HMS and MIT 0.8074 0.9935
HMS, Gordan Center, MGH 0.7600 0.9763

Radboud Uni. (DIAG) 0.5748 0.7786

EXB Research co. 0.5111 0.9156

Middle East Tech. Uni. 0.3889 0.8642

University of Toronto 0.3822 0.8149

DeepCare Inc 0.2439 0.8833

NLP LOGIX co. USA 0.3859 0.8298

ScanNet-32(w/o HNM) 0.7030 0.9415

ScanNet-32 0.8133 0.9669

3.5. Quantitative Evaluation and Comparison

In order to probe the efficacy of our method, we first

evaluate our ScanNet under different configurations. We set

the α as 1 and 2 to produce the dense predictions in our
ScanNet and call them “ScanNet-32” and “ScanNet-16”,

respectively. Note that generally larger α means denser pre-
dictions can be generated from the network. It is observed

in Table 3 that the results of ScanNet-16 is much better than

that of ScanNet-32, demonstrating denser framework can

give a better predictions on the metastasis, especially mi-

cro and ITC cases. We further evaluate the performance of

ScanNet-32 with and without hard negative mining strategy

and the results are listed in the last two rows of Table 3. The

performance of ScanNet-32 utilizing the hard negative min-

ing strategy significantly outperforms its counterpart with-

out the strategy on all metrics. This demonstrates the effi-

cacy of hard negative mining strategy to tackle the severe

class imbalance problem with enormous negative samples

which commonly happens in the field of medical image

analysis.

We also compared our method with several state-of-the-

art methods as shown in Table 3, and Figure 6 presents the

FROC and ROC curves from different methods. In the tu-

mor localization task, our method achieved the best per-

formance among all the methods, with the highest FROC

score of 0.8533 outperforming the runner-up team [27] by

a significant margin of 4.6%. It is worth noting that our

performance surpassing the human performance of 0.7325

from the pathologists more than 12%. For the WSI classi-

fication task, our AUC score was 0.9875 with simple post-

processing on tumor localization probability map, also sur-

passing human performance of 0.9660 from the patholo-

gists, and quite competitive with the leading method of

0.9935 [27].
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Figure 6. Evaluation Results. (a): FROC curves of tumor localiza-

tion task of different methods. (b): ROC curves of WSI classifica-

tion task of different methods.

3.6. Time performance

In order to evaluate the computation cost, we also com-

pared the time performance of our method with the top-

ranking methods with single GPU. The efficiency is eval-

uated by measuring the time cost on an approximately

2800×2800 sized ROI with scanning stride 32 and 16 (cor-
responding to dense coefficient α = 1 or 2 of ScanNet).
Compared with the patch-wised VGG16, the ScanNet only

takes 0.018minutes to process the ROI with stride 32, about
50 times faster than its patch-wised baseline. Based on the
specifications from different teams, we reimplemented the

methods and compared them under the same configuration

(prediction at level-0 with the same strides and hardware

settings). It is demonstrated that our ScanNet is dozens of

times faster than the patch-wise based on frameworks in-

cluding GoogleNet by HMS and MIT team, ResNet-34 by

EXB Research co. team, and AlexNet by NLP LOGIX co.

team, which generally take about 0.668, 0.724, and 0.334

Table 4. Efficiency comparison with others (unit: minute)

Network (team) stride 32 stride 16

ScanNet (ours) 0.018 0.073
GoogleNet (HMS and MIT) 0.668 2.673

ResNet-34 (EXB Research co.) 0.724 2.896

AlexNet (NLP LOGIX co. ) 0.334 1.337

VGG16 (patch-wised) 0.975 3.899

minutes, respectively. In comparison with the huge com-

putational cost in patch-wise based methods, our method

makes it possible for automatic WSI analysis in real clini-

cal practice.

4. Conclusions
In this paper, we have presented a novel framework by

leveraging fully convolutional networks for efficient infer-

ence, while reconstructing dense predictions for ensuring

accurate detection on both micro- and macro-metastases.

Incorporating with the strategies including asynchronous

sample prefetching and hard negative mining, the network

can be effectively trained. Extensive experiments on the

benchmark dataset of 2016 Camelyon Grand Challenge cor-

roborated that our method achieved superior performance

with a faster speed on the tumor localization task and even

surpassed human performance on the WSI classification

task. Future investigations include evaluating our method on

large-scale histology WSIs and promoting its application in

clinical practice.
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